МАОУ «Средняя общеобразовательная школа №1» г. Перми

Рассмотрено и согласовано на заседании ШМО учителей естественно-научного цикла. Протокол № 1 от 29.08.17

ПРИНЯТО:

Педагогическим советом: Протокол №1 от 30.08.17 «УТВЕРЖДАЮ» Директор: В.С.Нестюричева

маоу «сош №1" приказ № СЭД-059-01-12-195

от 31.08.17

РАБОЧАЯ ПРОГРАММА

Физика (база) Класс 11

УМК под редакцией Мякишева Г.Я., Буховцева Б.Б., Чаругина В.М.

Автор-составитель: В.В.Красных, учитель первой квалификационной категории

Рабочая программа по физике ориентированная на учебник Мякишев Г.Я., Буховцев Б.Б., Чаругин В.М. «Физика 11» Пояснительная записка

Значение физики в школьном образовании определяется ролью физической науки в жизни современного общества, ее влиянием на темпы развития научно-технического прогресса. Обучение физике вносит вклад в политехническую подготовку путем ознакомления учащихся с главными направлениями научно-технического прогресса, физическими основами работы приборов, технических устройств, технологических установок.

В задачи обучения физике входит:

- развитие мышления учащихся, формирование у них умений самостоятельно приобретать и применять знания, наблюдать и объяснять физические явления;
- овладение школьными знаниями об экспериментальных фактах, понятиях, законах, теориях, методах физической науки; о современной научной картине мира; о широких возможностях применения физических законов в технике и технологии;
- усвоение школьниками идей единства строения материи и неисчерпаемости процесса ее познания, понимание роли практики в познании, диалектического, характера физических явлений и законов;
- формирование познавательного интереса к физике и технике, развитие творческих способностей, осознанных мотивов учения; подготовка к продолжению образования и сознательному выбору профессии.

При изучении физических теорий, мировоззренческой интерпретации законов формируются знания учащихся о современной научной картине мира. Воспитанию учащихся служат сведения о перспективах развития физики и техники, о роли физики в ускорении научно-технического прогресса.

Данная рабочая программа, тематического и поурочного планирования изучения физики в 10 -11 общеобразовательных классах составлена на основе программы Г.Я. Мякишева для общеобразовательных учреждений. Изучение учебного материала предполагает использование учебника Мякишев Г.Я., Буховцев Б.Б., Сотский Н.Н. «Физика-10», Мякишев Г.Я., Буховцев Б.Б., Чаругин В.М. «Физика 11».

Направление программы развития школы «Магистраль» МАОУ «СОШ №1» г.Перми

Изучение физики связано с изучением математики, химии, биологии.

Знания материала по физике атомного ядра формируются с использованием знаний о периодической системе элементов Д. И. Менделеева, изотопах и составе атомных ядер (химия); о мутационном воздействии ионизирующей радиации (биология).

Базовый уровень изучения физики ориентирован на формирование общей культуры и в большей степени связан с мировоззренческими, воспитательными и развивающими задачами общего образования, задачами социализации.

Рабочая программа и поурочное планирование включает в себя основные вопросы курса физики 10 - 11 классов предусмотренных соответствующими разделами Государственного образовательного стандарта по физике.

Основной материал включен в каждый раздел курса, требует глубокого и прочного усвоения, которое следует добиваться, не загружая память учащихся множеством частых фактов. Таким основным материалом являются для всего курса физики законы сохранения (энергии, импульса, электрического заряда); для механики — идеи относительности движения, основные понятия кинематики, законы Ньютона; для молекулярной физики — основные положения молекулярно-кинетической теории, основное уравнение молекулярно-кинетической теории идеального газа, первый закон термодинамики; для электродинамики — учение об электрическом поле, электронная теория, закон Кулон, Ома и Ампера, явление электромагнитной индукции; для квантово физики — квантовые свойства сета, квантовые постулаты Бора, закон взаимосвязи массы и энергии. В основной материал также входят важнейшие следствия из законов и теорий,

их практическое применение. Изучение физических теорий, мировоззренческая интерпретация законов формируют знания учащихся о современной научной картине мира.

Изучение школьного курса физики должно отражать теоретико-познавательные аспекты учебного материла — границы применимости физических теорий и соотношения между теориями различной степени общности, роль опыта в физике как источника знаний и критерия правильности теорий. Воспитанию учащихся служат сведения о перспективах развития физики и техники, о роли физики в ускорении научно-технического прогресса, из истории развития науки (молекулярно-кинетической теории, учения о полях, взглядов на природу света и строение вещества).

Рекомендации к методике преподавания

В процессе преподавания важно научить школьников применять основные положения науки для самостоятельного объяснения физических явлений, результатов эксперимента, действия приборов и установок. Выделение основного материала в каждом разделе курса физики помогает учителю обратить внимание учащихся на те вопросы, которые они должны глубоко и прочно усвоить. Физический эксперимент является органической частью школьного курса физики, важным методом обучения.

Решение основных учебно-воспитательных задач достигается на уроках сочетанием разнообразных форм и методов обучения. Большое значение придается самостоятельной работе учащихся: повторению и закреплению основного теоретического материала; выполнению фронтальных лабораторных работ; изучению некоторых практических приложений физики, когда теория вопроса уже усвоена; применению знаний в процессе решения задач; обобщению и систематизации знаний.

Следует уделять больше внимания на уроке работе учащихся с книгой: учебником, справочной литературой, книгой для чтения, хрестоматией и т. п. При работе с учебником необходимо формировать умение выделять в тексте основной материал, видеть и понимать логические связи внутри материала, объяснять изучаемые явления и процессы.

Рекомендуется проведение семинаров обобщающего характера, например по таким темам: законы сохранения импульса и энергии и их применение; применение электрического тока в промышленности и сельском хозяйстве.

Решение физических задач должно проводиться в оптимальном сочетании с другими методами обучения. Из-за сокращения времени на изучение физики особое значение приобретают задачи, в решении которых используется несколько закономерностей; решение задач проводится, как правило, сначала в общем виде. При решении задач требующих применение нескольких законов, учитель показывает образец решения таких задач и предлагает подобные задачи для домашнего решения. Для учащихся испытывающих затруднение в решении указанных задач организуются индивидуальные консультации.

Основной учебный материал должен быть усвоен учащимися на уроке. Это требует от учителя постоянного продумывания методики проведения урока: изложение нового материала в форме бесед или лекций, выдвижение учебных проблем; широкое использование учебного эксперимента (демонстрационные опыты, фронтальные лабораторные работы, в том числе и кратковременные), самостоятельная работа учащихся. Необходимо совершенствовать методы повторения и контроля знаний учащихся, с тем, чтобы основное время урока было посвящено объяснению и закреплению нового материала. Наиболее эффективным методом проверки и коррекции знаний, учащихся при проведении промежуточной диагностики внутри изучаемого раздела является использование кратковременных (на 7-8 минут) тестовых тематических заданий. Итоговые контрольные работы проводятся в конце изучения соответствующего раздела. Все это способствует решению ключевой проблемы — повышению эффективности урока физики.

Учебно-тематический план 11 класс

№ п/п	Тема	Количест	В том числе		
		во часов	уроки	лабораторные работы	контрольные работы
1.	Магнитное поле	7			
2.	Электромагнитная индукция	7			
3.	Электромагнитные колебания и волны	12			
4.	Оптика	17			
5.	Квантовая физика	18			
6	Повторение.	7			
	Всего часов	68			

11 Класс. Содержание учебного материала. (68 часов, 2 часа в неделю, резерв 1 час) Основы электродинамики (продолжение). Магнитное поле (7 часов).

Взаимодействие токов. Магнитное поле тока. Магнитная индукция. Сила Ампера. Сила Лоренца.

Демонстрации:

- 1. Взаимодействие параллельных токов.
- 2. Действие магнитного поля на ток.
- 3. Устройство и действие амперметра и вольтметра.
- 4. Устройство и действие громкоговорителя.
- 5. Отклонение электронного лучка магнитным полем.

<u>Знать</u>: понятия: магнитное поле тока, индукция магнитного поля.

Практическое применение: электроизмерительные приборы магнитоэлектрической системы.

<u>Уметь</u>: решать задачи на расчет характеристик движущегося заряда или проводника с током в магнитном поле, определять направление и величину сил Лоренца и Ампера,

Электромагнитная индукция (7 часов)

Явление электромагнитной индукции. *Магнитный поток. Закон электромагнитной индукции. Правило Ленца. Самоиндукция. Индуктивность.* Взаимосвязь электрического и магнитного полей. Электромагнитное поле.

Демонстрации:

Электромагнитная индукция.

Правило Ленца.

Зависимость ЭДС индукции от скорости изменения магнитного потока.

Самоиндукция.

Зависимость ЭДС самоиндукции от скорости изменения силы цели и от индуктив-ности проводника.

<u>Знать</u>: понятия: электромагнитная индукция; закон электромагнитной индукции; правило Ленца, самоиндукция; индуктивность, электромагнитное поле.

<u>Уметь</u>: объяснять явление электромагнитной индукции и самоиндукции, решать задачи на применение закона электромагнитной индукции, самоиндукции.

Электромагнитные колебания и волны (12часов)

Свободные колебания в колебательном контуре. Период свободных электрических колебаний. Переменный электрический ток. Генерирование электрической энергии. Трансформатор. Передача электрической энергии. Электромагнитные волны. Свойства электромагнитных волн. Принципы радиосвязи. Телевидение.

Демонстрации:

Свободные электромагнитные колебания низкой частоты в колебательном контуре.

Зависимость частоты свободных электромагнитных колебаний от электроемкости и индуктивности контура.

Незатухающие электромагнитные колебания в генераторе на транзисторе.

Получение переменного тока при вращении витка в магнитном поле.

Устройство и принцип действия генератора переменного тока (на модели).

Осциллограммы переменною тока

Устройство и принцип действия трансформатора

Передача электрической энергии на расстояние с мощью понижающего и повышающего трансформатора.

Электрический резонанс.

Излучение и прием электромагнитных волн.

Отражение электромагнитных волн.

Преломление электромагнитных волн.

Интерференция и дифракция электромагнитных волн.

Поляризация электромагнитных волн.

Модуляция

И

детектирование

высокочастотных

электромагнитных

колебаний.

<u>Знать</u>: понятия: свободные и вынужденные колебания; колебательный контур; переменный ток; резонанс, электромагнитная волна, свойства электромагнитных волн.

Практическое применение: генератор переменного тока, схема радиотелефонной связи, телевидение.

<u>Уметь</u>: Измерять силу тока и напряжение в цепях переменного тока. Использовать трансформатор для преобразования токов и напряжений. Определять неизвестный параметр колебательного контура, если известны значение другого его параметра и частота свободных колебаний; рассчитывать частоту свободных колебаний в колебательном контуре с известными параметрами. Решать задачи на применение

формул:
$$T=2\pi\sqrt{LC}$$
 , $\omega=\frac{1}{\sqrt{LC}}$, $I=\frac{I_0}{\sqrt{2}}$, $U=\frac{U_0}{\sqrt{2}}$,

$$k = \frac{U_1}{U_2} = \frac{N_1}{N_2} = \frac{I_2}{I_1}$$
, $I = \frac{U}{Z}$, $Z = \sqrt{R^2 + (\omega L - \frac{1}{\omega C})^2}$. Объяснять распространение электромагнитных волн.

Оптика (17 часов)

Световые волны. (8часов)

Скорость света и методы ее измерения. Законы отражения и преломления света. Волновые свойства света: дисперсия, интерференция света, дифракция света. Когерентность. Поперечность световых волн. Поляризация света.

Демонстрации:

Законы преломления снега.

Полное отражение.

Световол.

Получение интерференционных полос.

Дифракция света на тонкой нити.

Дифракция света на узкой щели.

Разложение света в спектр с помощью дифракционной решетки.

Поляризация света поляроидами.

Применение поляроидов для изучения механических напряжений в деталях конструкций.

<u>Знать</u>: понятия: интерференция, дифракция и дисперсия света.

Законы отражения и преломления света,

Практическое применение: полного отражения, интерференции, дифракции и поляриза-ции света.

<u>Уметь</u>: измерять длину световой волны, решать задачи на применение формул, связывающих длину волны с частотой и скоростью, период колебаний с циклической частотой; на применение закона преломления света.

Элементы теории относительности. (4 часа)

Постулаты теории относительности. Принцип относительности Эйнштейна. Постоянство скорости света. Пространство и время в специальной теории относительности. Релятивистская динамика. Связь массы с энергией.

<u>Знать</u>: понятия: принцип постоянства скорости света в вакууме, связь массы и энергии.

<u>Уметь</u>: определять границы применения законов классической и релятивистской механики.

Излучения и спектры. (5 часа)

Различные виды электромагнитных излучений и их практическое применение: свойства и применение инфракрасных, ультрафиолетовых и рентгеновских излучений. Шкала электромагнитных излучений.

Демонстрации:

Невидимые излучения в спектре нагретого тела.

Свойства инфракрасного излучения.

Свойства ультрафиолетового излучения.

Шкала электромагнитных излучений (таблица).

Зависимость плотности потока излучения от расстояния до точечного источника.

<u>Знать</u>: практическое применение: примеры практического применения электромагнитных волн инфракрасного, видимого, ультрафиолетового и рентгеновского диапазонов частот.

<u>Уметь</u>: объяснять свойства различных видов электромагнитного излучения в зависимости от его длины волны и частоты.

Квантовая физика (18 часов)

[Гипотеза Планка о квантах.] Фотоэффект. *Уравнение Эйнштейна для фотоэффекта*. Фотоны. [Гипотеза де Бройля о волновых свойствах частиц. Корпускулярно-волновой дуализм. Соотношение неопределенности Гейзенберга.]

Строение атома. Опыты Резерфорда. Квантовые поступаты Бора. Испускание и поглощение света атомом. Лазеры.

[Модели строения атомного ядра: *протонно-нейтронная модель строения атомного ядра*.] Ядерные силы. Дефект массы и энергия связи нуклонов в ядре. Ядерная энергетика. Влияние ионизирующей радиации на живые организмы. [Доза излучения, закон радиоактивного распада и его статистический характер. Элементарные частицы: *частицы и античастицы*. Фундаментальные взаимодействия]

Значение физики для объяснения мира и развития производительных сил общества. Единая физическая картина мира.

Демонстрации:

Фотоэлектрический эффект на установке с цинковой платиной.

Законы внешнего фотоэффекта.

Устройство и действие полупроводникового и вакуумного фотоэлементов.

Устройство и действие фотореле на фотоэлементе.

Модель опыта Резерфорда.

Наблюдение треков в камере Вильсона.

Устройство и действие счетчика ионизирующих частиц.

<u>Знать</u>: Понятия: фотон; фотоэффект; корпускулярно-волновой дуализм; ядерная модель атома; ядерные реакции, энергия связи; радиоактивный распад; цепная реакция деления; термоядерная реакция; элементарная частица, атомное ядро.

Законы фотоэффекта: постулаты Борщ закон радиоактивного распада.

Практическое применение: устройство и принцип действия фотоэлемента; примеры технического - использования фотоэлементов; принцип спектрального анализа; примеры практических применений спектрального анализа; устройство и принцип действия ядерного реактора.

<u>Уметь</u>: Решать задачи на применение формул, связывающих энергию и импульс фотона с частотой соответствующей световой волны. Вычислять красную границу фотоэффекта и энергию фотоэлектронов на основе уравнения Эйнштейна. Определять продукты ядерных реакций на основе законов сохранения электрического заряда и массового числа. Рассчитывать энергетический выход ядерной реакции. Определять знак заряда или направление движения элементарных частиц по их трекам на фотографиях.

Повторение. (7 часов)

Примерные нормы оценки знаний и умений учащихся по физике

При оценке ответов учащихся учитываются следующие знания:

о физических явлениях:

- > признаки явления, по которым оно обнаруживается;
- > условия, при которых протекает явление;
- > связь данного явлении с другими;
- > объяснение явления на основе научной теории;
- > примеры учета и использования его на практике;

о физических опытах:

> цель, схема, условия, при которых осуществлялся опыт, ход и результаты опыта;

о физических понятиях, в том числе и о физических величинах:

- > явления или свойства, которые характеризуются данным понятием (величиной);
- > определение понятия (величины);
- > формулы, связывающие данную величину с другими;
- > единицы физической величины;
- > способы измерения величины;

о законах:

- > формулировка и математическое выражение закона;
- > опыты, подтверждающие его справедливость;
- > примеры учета и применения на практике;
- > условия применимости (для старших классов);

о физических теориях:

- > опытное обоснование теории;
- > основные понятия, положения, законы, принципы;
- > основные следствия;
- > практические применения;
- > границы применимости (для старших классов);

о приборах, механизмах, машинах:

- назначение; принцип действия и схема устройства;
- > применение и правила пользования прибором.

Физические измерения.

- > Определение цены деления и предела измерения прибора.
- > Определять абсолютную погрешность измерения прибора.
- > Отбирать нужный прибор и правильно включать его в установку.
- Снимать показания прибора и записывать их с учетом абсолютной погрешности измерения.
 Определять относительную погрешность измерений.

Следует учитывать, что в конкретных случаях не все требования могут быть предъявлены учащимся, например знание границ применимости законов и теорий, так как эти границы не всегда рассматриваются в курсе физики средней школы.

Оценке подлежат умения:

- **>** применять понятия, законы и теории для объяснения явлений природы, техники; оценивать влияние технологических процессов на экологию окружающей среды, здоровье человека и других организмов;
 - > самостоятельно работать с учебником, научно-популярной литературой, информацией в СМИ и Интернете;
 - > решать задачи на основе известных законов и формул;
 - > пользоваться справочными таблицами физических величин.

Календарно-тематический план

11 класс (68 ч)

№	Тема урока	Дата	Примечание		
урока					
	Электродинамика (14 ч)				
	Магнитное п	оле (7 ч)			
1	Стационарное магнитное поле	сен			
2	Сила Ампера				
3	Решение задач				
4	Сила Лоренца				
5	Решение задач				
6	Магнитные свойства вещества				
7	Обобщение темы «Магнитное поле»				
	Электромагнитная	индукция	(7 ч)		
8	Явление электромагнитной индукции				
9	Явление электромагнитной индукции				
10	Направление индукционного тока. Правило Ленца				
11	Закон электромагнитной индукции.				
12	Решение задач				
13	Обобщающе-повторительное занятие по темам	ОКТ			
	«Магнитное поле. Электромагнитная индукция»				
14	Контрольная работа №1 «Магнитное поле.				
	Электромагнитная индукция»	/1.			
Колебания и волны (12 ч)					
Механические колебания (2 ч)					
15	Механические колебания				
16	Решение задач				
	Электромагнитные колебания (3 ч)				
17	Аналогия между механическими и электромагнитными				
4.0	колебаниями				
18	Решение задач на характеристики электромагнитных				

	свободных колебаний				
19	Переменный электрический ток				
	Производство, передача и использование электрической энергии (2 ч)				
20	Трансформаторы				
21	Производство, передача и использование электрической				
	энергии				
	Механические в	волны (1 ч			
22	Волна. Свойства волн и основные характеристики				
	Электромагнитны	е волны (4	4 ч)		
23	Опыты Герца	нояб			
24	Изобретение радио А.С.Поповым. Принципы радиосвязи				
25	Обобщающе-повторительное занятие по теме				
	«Колебания и волны»				
26	Контрольная работа №2 «Колебания и волны»				
	Оптика (
	Световые вол	іны (8 ч)			
27	Введение в оптику				
28	Основные законы геометрической оптики				
29	Решение задач				
30	Линзы. Изображения, даваемые линзами.				
31	Лабораторная работа «Экспериментальное	дек			
	определение оптической силы и фокусного				
	расстояния собирающей линзы»				
32	Дисперсия света				
33	Интерференция света				
34	Дифракция света				
2.5	Элементы теории относительности (4 ч)				
35	Элементы специальной теории относительности.				
26	Постулаты Эйнштейна				
36	Элементы релятивистской динамики				
37	Решение задач				
38	Обобщающее занятие по теме «Элементы специальной	дек			
	теории относительности»				
20	Излучение и сп	• •)		
39	Излучение и спектры.	ЯНВ			

40	Шкала электромагнитных излучений		
41	Решение задач по теме «Излучение и спектры» с		
	выполнением лабораторной работы №8 «Наблюдение		
	сплошного и линейчатого спектров»		
42	Обобщающее занятие по теме «Оптика»		
43	Контрольная работа №3 по теме «Оптика»		
	Квантовая физ	зика (18	ч)
	Световые ква	нты (4 ч)	
44	Законы фотоэффекта		
45	Решение задач		
46	Фотоны, гипотеза де Бройля	ЯНВ	
47	Квантовые свойства света: световое давление, химическое действие света	фев	
	Атомная физ	ика (5 ч)	
48	Квантовые постулаты Бора. Излучение и поглощение света атомом.		
49	Лазеры		
50	Решение задач		
51	Обобщающе-повторительное занятие по темам		
	«Световые кванты. Атомная физика»		
52	Контрольная работа №4 «Световые кванты». «Атомная физика»		
	Физика атомного ядра. Элем	ентарные	частицы (9 ч)
53	Радиоактивность		
54	Строение атомного ядра. Ядерные силы.		
55	Энергия связи атомных ядер	февр	
56	Ядерная реакция	март	
57	Цепная ядерная реакция. Атомная электростанция		
58	Применение физики ядра на практике. Биологическое		
	действие радиоактивных излучений		
59	Решение задач на законы физики ядра		
60	Элементарные частицы		
61	Зачет по теме «Физика ядра и элементы ФЭЧ»		
- 62	Повторен	ие(7)	T
62	Физическая картина мира		

63	Повторение пройденного материала		
64	Повторение пройденного материала		
65	Повторение пройденного материала		
66	Повторение пройденного материала		
67	Повторение пройденного материала		
68	Повторение пройденного материала	май	